在△ABC中,锐角B所对的边b=7,其外接圆半径R=7/33,△ABC的面积S=103,求△ABC其他两边的长.
问题描述:
在△ABC中,锐角B所对的边b=7,其外接圆半径R=
7 3
,△ABC的面积S=10
3
,求△ABC其他两边的长.
3
答
∵由正弦定理可得 sinB=
=b 2R
=7 2•
7 3
3
,又B∈(0,
3
2
),∴B=π 2
. …(4分)π 3
又S=
acsinB=101 2
,∴ac=40. …(1)…(7分)
3
∵由余弦定理可得 b2=a2+c2-2accosB,∴a2+c2-ac=49. …(2)…(10分)
由(1)(2)得
,或
a=5 c=8
…(13分)
a=8 c=5
故三角形其他两边长为a=5,c=8,或a=8,c=5.…(14分)
即△ABC其他两边的长分别为5和8.