(b-c)的立方+(c-a)的立方+(a-b)的立方 因式分解

问题描述:

(b-c)的立方+(c-a)的立方+(a-b)的立方 因式分解

把a-b,b-c,c-a看成整体原式=(a-b+b-c)[(a-b)^2-(a-b)(b-c)+(b-c)^2]+(c-a)^3=(a-c)[(a-b)^2-(a-b)(b-c)+(b-c)^2-(a-c)^2]=(a-c)[(a-b)(a-b-b c) +(b-c+ a-c)(b-c-a+c)]=(a-c)(a-b)(-3b 3c)=-3(a-c)(a-b)(b-c)