已知三棱锥P-ABC中,PA垂直于平面ABC,PB垂直于AC,PA=AC=1/2AB,N为AB上一点,AB=4AN,

问题描述:

已知三棱锥P-ABC中,PA垂直于平面ABC,PB垂直于AC,PA=AC=1/2AB,N为AB上一点,AB=4AN,
M,S分别为PB、BC中点,求证:1.CM垂直于SN
2.求SN与平面CMN所成角的大小
第一问已经证明出了,方法是作CO垂直于AB

不知道你的基础是什么,我就假设你学过解析几何了,看不懂的话再问我.易见AP垂直于AB,于是我们可以以A为原点,AP(射线)为z轴,AB(射线)为x轴,AP(线段)为单位长度,建立空间直角坐标系.由题设,PA垂直于平面ABC,故C在...