最上层有3根,最下层有13根,每相邻两层相差一根,一共多少根
问题描述:
最上层有3根,最下层有13根,每相邻两层相差一根,一共多少根
答
由题可知: 最上层有3根,由此可得:3+(3+1)+(3+2)……+(3+10)
=3+4+5+6+7+8+9+10+11+12+13
=88根
答
这是等差数列
a(1)=3
a(n)=13
公差d=1
共有n层
则:n=(a(n)-a(1))/d +1
即n=(13-3)/1 +1
得n=11
则前n项和S(n)=(a(1)+a(n))×n/2
即S(11)=(3+13)×11÷2
得S(11)=88
即共有88根
答
88根.
答
根据题意得:
钢管总数为:3+4+5+6+7+8+9+10+11+12+13=88根
答
那实际就是3+4+.+13
总共13-3+1=11层,
一共有:11*(13+3)/2=88根