牛顿迭代法是什么原理呢为什么过方程的图象作切线,切线与x轴的交点x0就是方程的根r的近似值?为何过方程的图象的x0点作切线,切线与x轴的交点x1也是方程的根的近似值,并且比x0更接近r?怎样证明当迭代次数无限的时候,x的极限是r呢?在复数系内,一元n次方程有n个根,牛顿迭代法能把虚根计算出来吗?还是只能计算实根?
问题描述:
牛顿迭代法是什么原理呢
为什么过方程的图象作切线,切线与x轴的交点x0就是方程的根r的近似值?
为何过方程的图象的x0点作切线,切线与x轴的交点x1也是方程的根的近似值,并且比x0更接近r?
怎样证明当迭代次数无限的时候,x的极限是r呢?
在复数系内,一元n次方程有n个根,牛顿迭代法能把虚根计算出来吗?还是只能计算实根?
答
牛顿迭代法是以微分为基础的,微分就是用直线来代替曲线,由于曲线不规则,那么我们来研究直线代替曲线后,剩下的差值是不是高阶无穷小,如果是高阶无穷小,那么这个差值就可以扔到不管了,只用直线就可以了,这就是微分的意...