将1,2,…,100这100个正整数任意分成50组,每组两个数.现将每组两个数中的一个记为a,另一个记为b,代入12(|a−b|+a+b)中进行计算,并求出结果.50组都代入后,可求得50个值,求这50个值的和的最大值.

问题描述:

将1,2,…,100这100个正整数任意分成50组,每组两个数.现将每组两个数中的一个记为a,另一个记为b,代入

1
2
(|a−b|+a+b)中进行计算,并求出结果.50组都代入后,可求得50个值,求这50个值的和的最大值.

①若a≥b,则代数式中绝对值符号可直接去掉,∴代数式等于a,②若b>a则绝对值内符号相反,∴代数式等于b由此可见输入一对数字,可以得到这对数字中大的那个数(这跟谁是a谁是b无关)既然是求和,那就要把这五十个数...
答案解析:先分别讨论a和b的大小关系,分别得出代数式的值,进而举例得出规律,然后以此规律可得出符合题意的组合,求解即可.
考试点:绝对值.


知识点:本题考查了整数问题的综合运用,有一定的难度,解答本题的关键是利用举例法得出组合规律,这在一些竞赛题的解答中经常用到,要注意掌握.