已知m^2+m-2=0 求m^3+2m^2-m+1的值

问题描述:

已知m^2+m-2=0 求m^3+2m^2-m+1的值

m可能等于1或-2
m=1 m^3+2m^2-m+1=3
m=-2 m^3+2m^2-m+1=3

由m^2+m-2=0,得m^2+m=2
m^3+2m^2-m+1
=m^3+m^2+m^2-m+1
=m(m^2+m)+m^2-m+1
=2m+m^2-m+1
=m^2+m+1
=2+1=3