用长为12 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=xm,五边形ABCDE的面积为S m2.问当x取什么值时,S最大并求出S的最大值.
问题描述:
用长为12 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=xm,五边形ABCDE的面积为S m2.问当x取什么值时,S最大并求出S的最大值.
答
知识点:求最值问题解决的基本思路是转化为函数问题,转化为依据函数问题求最值的问题.
连接EC,作DF⊥EC,垂足为F
∵∠DCB=∠CDE=∠DEA,∠EAB=∠CBA=90°,
∴∠DCB=∠CDE=∠DEA=120°,(1)
∵DE=CD
∴∠DEC=∠DCE=30°,
∴∠CEA=∠ECB=90°,
∴四边形EABC为矩形,(2)
∵DE=xm,
∴AE=
=12−DE−CD 2
=6-x,DF=12−x−x 2
x,EC=1 2
x(3)
3
s=−
x2+63
3
4
x(0<x<6).(5)(自变量不写不扣分)
3
当x=4m时,S最大=12
m2.(8)
3
答案解析:已知AE⊥AB,BC⊥AB,∠C=∠D=∠E.就可以求出五边形的各个角的度数,连接EC,则△DEC是等腰三角形.四边形EABC为矩形,在△DEC中若作DF⊥EC,依据三线合一定理以及三角函数就可以用DE表示出EC的长,再根据总长是12m,AE就可以用x表示出来,因而五边形的面积写成△DEC于矩形EABC的和的问题,就可以把面积表示成x的函数,转化为求二次函数的最值问题.
考试点:二次函数的应用.
知识点:求最值问题解决的基本思路是转化为函数问题,转化为依据函数问题求最值的问题.