已知|m+4|与n^2-2n+1互为相反数,试把多项式(x^2+4y^2)-(mxy+n)分解因式(要有过程)
问题描述:
已知|m+4|与n^2-2n+1互为相反数,试把多项式(x^2+4y^2)-(mxy+n)分解因式(要有过程)
答
|m+4|与n^2-2n+1互为相反数,
|m+4|+n^2-2n+1=0
|m+4|+(n-1)²=0
所以m+4=0 n-1=0
m= -4 n=1
(x^2+4y^2)-(mxy+n)
=(x²+4y²)-(-4xy+1)
=x²+4xy+4y²-1
=(x+2y)²-1
=(x+2y+1)(x+2y-1)
答
n²-2n+1=(n-1)²
绝对值项和平方项均恒非负,要两者互为相反数,只有0的相反数是0,都不是负数,因此
n-1=0 n=1
m+4=0 m=-4
(x²+4y²)-(mxy+n)
=(x²+4y²)-(-4xy+1)
=x²+4y²+4xy -1
=(x+2y)²-1
=(x+2y+1)(x+2y-1)
答
|m+4|与n^2-2n+1互为相反数,
|m+4|+n^2-2n+1=0
|m+4|+(n-1)²=0
所以m+4=0 n-1=0
m= -4 n=1
(x^2+4y^2)-(mxy+n)
=(x²+4y²)-(-4xy+1)
=x²+4xy+4y²-1
=(x+2y)²-1
=(x+2y+1)(x+2y-1)