已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、B两点同时相向而行,甲的速度是4个单位长度/秒(1)问多少秒后,甲到A、B、C的距离和为40个单位?(2)若乙的速度为6个单位长度/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上哪个点相遇?(3)在(1)、(2)的条件下,当甲到A、B、C的距离和为40个单位长度时,甲掉头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.
问题描述:
已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、B两点同时相向而行,甲的速度是4个单位长度/秒(1)问多少秒后,甲到A、B、C的距离和为40个单位?(2)若乙的速度为6个单位长度/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上哪个点相遇?(3)在(1)、(2)的条件下,当甲到A、B、C的距离和为40个单位长度时,甲掉头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.
答
(1)设y秒后甲到A,B,C三点的距离之和为40个单位,
B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.
①AB之间时:4y+(14-4y)+(14-4y+20)=40
解得y=2;
②BC之间时:4y+(4y-14)+(34-4y)=40,
解得y=5.
(2)设x秒后甲与乙相遇,则
4x+6x=34,
解得 x=3.4,
4×3.4=13.6,
-24+13.6=-10.4.
故甲、乙在数轴上的-10.4相遇;
(3)①甲位于AB之间时:甲返回到A需要2s,乙4s只能走24连AB之间的一半都到不了,故不能与A相遇
②甲位于BC之间时:甲已用5s,乙也已用5s,走了30,距A点只剩4了,连一秒都用不了,甲距A20,故不能相遇.