2/51+4/51+6/51+...50/51-1/51-3/51-...-49/51 2/51+4/51+6/51+...50/51-1/51-3/51-...-49/51 请高手指教,
问题描述:
2/51+4/51+6/51+...50/51-1/51-3/51-...-49/51
2/51+4/51+6/51+...50/51-1/51-3/51-...-49/51 请高手指教,
答
2/51+4/51+6/51+...50/51-1/51-3/51-...-49/51
=2/51-1/51+4/51-3/51+……+50/51-49/51
=1/51*25
=25/51
答
2、4、6....50可以记作2n (n=1、2、3....25)
1、3、5....49可以记作2n-1(n=1、2、3....25)
份母相同:
原式=n*{[2n-(2n-1)]/51}=n*[(2n-2n+1)/51]=n*1/51=25/51
答
2/51+4/51+6/51+...50/51-1/51-3/51-...-49/51=(2/51-1/51)+(4/51-3/51)+……+(50/51-49/51)=25*1/51=25/51