张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值并求出最大值.(参考公式:二次函数y=ax2+bx+c(a≠0),当x=-b2a时,y最大(小)值=4ac−b24a)
问题描述:
张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x为何值时,S有最大值并求出最大值.
(参考公式:二次函数y=ax2+bx+c(a≠0),当x=-
时,y最大(小)值=b 2a
) 4ac−b2
4a
答
知识点:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次项系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比用公式法简便.
(1)由题意,得S=AB•BC=x(32-2x),
∴S=-2x2+32x.
(2)∵a=-2<0,
∴S有最大值.
∴x=-
=-b 2a
=8时,有S最大=32 2×(−2)
=4ac−b2
4a
=128.−322
4×(−2)
∴x=8时,S有最大值,最大值是128平方米.
答案解析:在题目已设自变量的基础上,表示矩形的长,宽;用面积公式列出二次函数,用二次函数的性质求最大值.
考试点:二次函数的应用.
知识点:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次项系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比用公式法简便.