设A是实数域上n级可逆矩阵,证明:A可唯一分解成A=TB.其中T是正交阵,B是主对角元都为正的上三角矩阵.备注:存在性已证出,主要是我在证唯一性的时候方法太复杂,是逐个去证T的列向量唯一.希望各路高人能给出简便证法.

问题描述:

设A是实数域上n级可逆矩阵,证明:A可唯一分解成A=TB.其中T是正交阵,B是主对角元都为正的上三角矩阵.
备注:存在性已证出,主要是我在证唯一性的时候方法太复杂,是逐个去证T的列向量唯一.希望各路高人能给出简便证法.

考虑到 R^n 的任何一组基可以标准正交化即可得到存在性(考虑两组基的过渡阵).唯一性是显然的,证明如下:设 T_1B_1=T_2B_2, 则 {T_2}^{-1}T_1=B_2{B_1}^{-1}.注意到1.正交阵的乘积,正交阵的逆还是正交阵2.上三角阵的...