已知a={1,3,5,7},b={1,4,7},c={2,5,7,8}.anb={1,3,5,7,}n{11,44,7,}={1,7};anb={1,3,5,7,}u{111,444,7}={1,3,4,5,7}.根据此规定,可求的(a u c)n b={?}
问题描述:
已知a={1,3,5,7},b={1,4,7},c={2,5,7,8}.anb={1,3,5,7,}n{11,44,7,}={1,7};
anb={1,3,5,7,}u{111,444,7}={1,3,4,5,7}.根据此规定,可求的(a u c)n b={?}
答
这是高一数学第一章的东西,你的题干可能打错了!!!如果我没看错的话应该是已知a={1,3,5,7},b={1,4,7},c={2,5,7,8}。anb={1,3,5,7,}n{1,4,7,}={1,7};anb={1,3,5,7,}u{1,4,7}={1,3,4,5,7}。根据此规定,可求的(a u c)n b={?}???
如果我所说题干正确那么(a u c) n b={1,2,3,5,7,8}n{1,4,7}={1,7}.估计没错了
答
auc = {1,2,3,5,7,8}
(a u c) n b={1,2,3,5,7,8}n{1,4,7}={1,7}
a u c 就是把a c 的元素全合在一起 重复的算一个
a n b 就是把a b 中的元素相同的合在一起