关于二阶齐次微分方程解的问题?书上说,y1,y2是二阶齐次微分方程的两个解,那么只要这两个解无关,C1y1+C2y就是这个方程的通解,我想问为什么是2个无关解的线性组合是通解,而不是3个,4个无关解的线性组合是通解?

问题描述:

关于二阶齐次微分方程解的问题?
书上说,y1,y2是二阶齐次微分方程的两个解,那么只要这两个解无关,C1y1+C2y就是这个方程的通解,我想问为什么是2个无关解的线性组合是通解,而不是3个,4个无关解的线性组合是通解?

你可以得出关于二阶齐次微分方程的无数个特解,只要其中有两个解线性无关,将它们线性组合即可得到通解.但是别忘了它们之间只是系数不同,可以合并同类项的,最后还是化简为C1y1+C2y2形式.换句话说,只可能存在两个解线性无关,三个解中必有两个解是线性相关的.不信可以找个例题试试.