一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. x=13y=2B. x=14y=1C. x=15y=1D. x=14y=2
问题描述:
一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )
A.
x=13 y=2
B.
x=14 y=1
C.
x=15 y=1
D.
x=14 y=2
答
根据题意,得
,
(x+y)×3=45 (x−y)×5=65
解,得
.
x=14 y=1
故选B.
答案解析:用二元一次方程组解决应用题的关键是:找到2个合适的等量关系.
关于船航行的问题有2个不变的等量关系
.
(静水速度+水流速度)×顺水时间=顺水路程 (静水速度−水流速度)×逆水时间=逆水路程
考试点:二元一次方程组的应用.
知识点:主要考查的题中出现船航行的问题时,那么就一定需要上述2个不变的等量关系.