解下列方程 {x+y=9 (1) {(10y+x)-(10x+y)=9 (2){(10x+y)-3(x+y)=23 (1){5(x+y)+1=10x+y (2){x+y=9 (1){(10y+x)-(10x+y)=9 (2) {(10x+y)-3(x+y)=23 (1){5(x+y)+1=10x+y (2)
问题描述:
解下列方程 {x+y=9 (1) {(10y+x)-(10x+y)=9 (2)
{(10x+y)-3(x+y)=23 (1)
{5(x+y)+1=10x+y (2)
{x+y=9 (1)
{(10y+x)-(10x+y)=9 (2)
{(10x+y)-3(x+y)=23 (1)
{5(x+y)+1=10x+y (2)
答
第一题
x+y =9 (1)式
10y+x -10x-y =9 (2)式 --> 9y-9x =9 --> y-x =1 (3)式
(1)+(3) = 2y= 10 --> y=5, x=4
第二题
10x+y-3x-3y = 23 --> 7x-2y =23 (1)式
5x+5y+1=10x+y -->5x-4y=1 (2)式
(1)式*2得 14x-4y=46 (3)式
(3)式-(2)式 = 9x=45 --> x=5 , y= 6
答
x+y=9 (1) (10y+x)-(10x+y)=9 (2)由(2),得 y-x=1 (3)(1)+(3),得 y=5x=4y=5{(10x+y)-3(x+y)=23 (1){5(x+y)+1=10x+y (2)由(1),得 7x-2y=23 (3)由(2),得 5x-4y=1 (4)2*(3)-(4),得 9x=45x=5把x=5代入(4),得 ...