(2010•嘉兴)若自然数n使得三个数的加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+53=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是( )A. 0.88B. 0.89C. 0.90D. 0.91
问题描述:
(2010•嘉兴)若自然数n使得三个数的加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+53=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是( )
A. 0.88
B. 0.89
C. 0.90
D. 0.91
答
知识点:本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
.易错点的得到连加进位数的个数.
当n=0时,0+1=1,0+2=2,n+(n+1)+(n+2)=0+1+2=3,不是连加进位数;
当n=1时,1+1=2,1+2=3,n+(n+1)+(n+2)=1+2+3=6,不是连加进位数;
当n=2时,2+1=3,2+2=4,n+(n+1)+(n+2)=2+3+4=9,不是连加进位数;
当n=3时,3+1=4,3+2=5,n+(n+1)+(n+2)=3+4+5=12,是连加进位数;
当n=4时,4+1=5,4+2=6,n+(n+1)+(n+2)=4+5+6=15,是连加进位数;
故从0,1,2,…,9这10个自然数共有连加进位数10-3=7个,
由于10+11+12=33个位不进位,所以不算.
又因为13+14+15=42,个位进了一,所以也是进位.
按照规律,可知0,1,2,10,11,12,20,21,22,30,31,32不是,其他都是.
所以一共有88个数是连加进位数.概率为0.88.
故选A.
答案解析:根据随机事件概率大小的求法,找准两点:
①符合条件的情况数目;
②全部情况的总数.
二者的比值就是其发生的概率的大小.
考试点:概率公式.
知识点:本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
m |
n |