用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有(  )A. 108种B. 60种C. 48种D. 36种

问题描述:

用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有(  )
A. 108种
B. 60种
C. 48种
D. 36种

首先看图形中的1,5,9,有3种可能, 当1,5,9,为其中一种颜色时,2,6共有4种可能,其中2种2,6是涂相同颜色,各有2种可能共6种可能.4,8及7,与2,6及3,一样有6种可能并且与2,6,3,颜色无关.当1,5,9...
答案解析:当1,5,9,为其中一种颜色时,2,6共有4种可能,其中2种2,6是涂相同颜色,各有2种可能共6种可能.4,8及7,与2,6及3,一样有6种可能并且与2,6,3,颜色无关,当1,5,9换其他的颜色时也是相同的情况,相乘得到结果.
考试点:计数原理的应用.
知识点:本题考查分别计数原理,考查分类原理,是一个限制元素比较多的题目,解题时注意分类,做到不重不漏.