咖啡馆配制两种饮料,甲种饮料每杯含奶粉9g,咖啡4g,糖3g;乙种饮料每杯含仍粉4g,咖啡5g,糖10g.已知每天原料的使用限额为奶粉3600g,咖啡2000g,糖3000g,如果甲种饮料每杯能获利0.7元,乙种饮料每杯能获利1.2元,若每天在原料的使用限额内饮料能全部售出,应配制两种饮料各多少杯获利最大?
问题描述:
咖啡馆配制两种饮料,甲种饮料每杯含奶粉9g,咖啡4g,糖3g;乙种饮料每杯含仍粉4g,咖啡5g,糖10g.已知每天原料的使用限额为奶粉3600g,咖啡2000g,糖3000g,如果甲种饮料每杯能获利0.7元,乙种饮料每杯能获利1.2元,若每天在原料的使用限额内饮料能全部售出,应配制两种饮料各多少杯获利最大?
答
设每天配制甲种饮料x(x∈Z)杯、乙种饮料y(y∈Z)杯可获得最大利润,利润总额为z元,那么9x+4y≤36004x+5y≤20003x+10y≤3000x≥0,y≥0,作出此不等式组所表示的平面区域(如图),即可行域.目标函数为z=0.7x+1....
答案解析:利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用.本题主要考查找出约束条件与目标函数,准确地描画可行域,再利用图形直线求得满足题设的最优解.
考试点:简单线性规划的应用.
知识点:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.