sin10,sin20,cos10,cos20分别为多少(sin30/sin10)-(cos30/cos10)=?[根号(1-2sin20 cos20)]/(sin20-cos20)
问题描述:
sin10,sin20,cos10,cos20分别为多少
(sin30/sin10)-(cos30/cos10)=?
[根号(1-2sin20 cos20)]/(sin20-cos20)
答
可以化简的 答案是2
答
用计算器算
答
(sin30/sin10)-(cos30/cos10)= (sin30cos10-cos30sin10)/sin10cos10
(sin30cos10-cos30sin10)=sin(30-10)
2sin10cos10=sin(2*10)'这两个公式很重要
(sin30/sin10)-(cos30/cos10)=sin20/(1/2*sin20)=2
答
你把原题贴出来吧,估计你的题目可以直接化简的
答
题目1是:(sin30/sin10)-(cos30/cos10)= (sin30cos10-cos20sin10)/(sin10cos10)= sin(30-10)/(1/2sin20)=2题目2是:[根号(1-2sin20 cos20)]/(sin20-cos20) = (cos20-sin20)/(sin20-cos20)= -1
答
(sin30cos10-cos30sin10)/(sin10cos10)
=2sin20/2sin10cos10
=2