n个人排成一队,已知甲排在乙前面,试求乙恰好紧跟甲后面的概率.为什么是2/n,不是1/n?甲排在乙前面为n!/2,乙紧跟甲后面为捆绑,为(n-1)!/2,所以概率为[(n-1)!/2]/[n!/2]=1/n吗

问题描述:

n个人排成一队,已知甲排在乙前面,试求乙恰好紧跟甲后面的概率.
为什么是2/n,不是1/n?甲排在乙前面为n!/2,乙紧跟甲后面为捆绑,为(n-1)!/2,所以概率为[(n-1)!/2]/[n!/2]=1/n吗