如图甲所示,两条电阻不计的金属导轨平行固定在倾角为37°的斜面上,两导轨间距为L=0.5m.上端通过导线与R=2Ω的电阻连接,下端通过导线与RL=4Ω的小灯泡连接.在CDFE矩形区域内有垂直斜面向上的匀强磁场,CE间距离d=2m.CDFE区域内磁场的磁感应强度B随时间变化的关系如图乙所示.在t=0时,一阻值为R0=2Ω的金属棒从AB位置由静止开始运动,在金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化.设导轨AC段有摩擦,其他部分光滑,金属棒运动过程中始终与CD平行(g取10m/s2,sin 37°=0.6,cos 37°=0.8).求:(1)通过小灯泡的电流强度;(2)金属导轨AC段的动摩擦因数;(3)金属棒从AB位置运动到EF位置过程中,整个系统产生的热量.

问题描述:

如图甲所示,两条电阻不计的金属导轨平行固定在倾角为37°的斜面上,两导轨间距为L=0.5m.上端通过导线与R=2Ω的电阻连接,下端通过导线与RL=4Ω的小灯泡连接.在CDFE矩形区域内有垂直斜面向上的匀强磁场,CE间距离d=2m.CDFE区域内磁场的磁感应强度B随时间变化的关系如图乙所示.在t=0时,一阻值为R0=2Ω的金属棒从AB位置由静止开始运动,在金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化.设导轨AC段有摩擦,其他部分光滑,金属棒运动过程中始终与CD平行(g取10m/s2,sin 37°=0.6,cos 37°=0.8).求:
作业帮
(1)通过小灯泡的电流强度;
(2)金属导轨AC段的动摩擦因数;
(3)金属棒从AB位置运动到EF位置过程中,整个系统产生的热量.

(1)由法拉第电磁感应定律得  E=△Φ△t=△B△tLd=0.5×0.5×2V=0.5 V由闭合电路欧姆定律得  IL=ERL+R•R0R+R0=0.1 A(2)灯泡亮度不变,则全程通过灯泡的电流恒为IL,设金属棒运动...
答案解析:(1)由于在金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化,说明棒在AC段运动时,B均匀增大,CE段做匀速运动,研究棒AC段研究过程,根据法拉第电磁感应定律和闭合电路欧姆定律求解通过小灯泡的电流强度;
(2)金属导轨AC段做匀加速运动,先从电磁感应角度求出棒到达CD处的速度,再根据牛顿第二定律和运动学公式结合求解AC段的动摩擦因数;
(3)金属棒在CE段做匀速直线运动,根据平衡条件和安培力公式结合求出棒的质量,再根据能量守恒求解整个系统产生的热量.
考试点:导体切割磁感线时的感应电动势;闭合电路的欧姆定律.
知识点:对于复杂的电磁感应问题,关键通过审题找到突破口,本题关键抓住灯泡的亮度不变,正确判断棒的运动情况,从力和能两个角度进行研究.力的角度关键要会推导安培力与速度的关系,能的角度关键分析能量是怎样转化的.