已知围棋盒子中有若干黑子和白子,若从中取出2粒都是黑子的概率是七分之一,从中取出2粒都是白子的概率是三十五分之十二,则从中任意取出2粒恰好是同一种颜色的概率是多少?

问题描述:

已知围棋盒子中有若干黑子和白子,若从中取出2粒都是黑子的概率是七分之一,从中取出2粒都是白子的概率是三十五分之十二,则从中任意取出2粒恰好是同一种颜色的概率是多少?

可列三个组合式:C(2,a)/C(2,a+b)=1/7,
C(2,b)/C(2,a+b)=12/35;
(C(2,a)+C(2,b))/C(2,a+b)=?

1/7+12/35=17/35

楼主:这个问题,取出同是黑子的概率是1/7,同是白子的概率是12/35,那么从中取出是同一种颜色的概率则是这两种概率相加了,因为既然相同,要么是白色,要么就是黑色了,另外的就是黑和白各一粒.因此,取出同一种颜色的概率是1/7+12/35=17/35.