怎么求当x趋向于正无穷时sin(2/x+1)^2x的极限

问题描述:

怎么求当x趋向于正无穷时sin(2/x+1)^2x的极限

lim(x->+∞) sin (2/x + 1)^(2x) =
令:y = (2/x+1)^(2x)
ln y = 2x ln(2/x+1)
lim(x->+∞) ln y = lim(x->+∞) 2x ln(2/x+1) = lim(x->+∞) 2 ln(2/x+1) / (1/x) --- 用洛必达法则
= 2 lim(x->+∞) - (2/x^2)/[(2/x+1)(-1/x^2)] = 4
--> lim(x->+∞) ln y = 4 y = e^4
所求的极限:lim(x->∞) sin (2/x + 1)^(2x) = sin (e^4)