已知两集合A={x|x=t2+(a+1)t+b,t∈R},B={x|x=-t2-(a-1)t-b,t∈R},且A∩B={x|-1≤x≤2},求常数a、b的值.
问题描述:
已知两集合A={x|x=t2+(a+1)t+b,t∈R},B={x|x=-t2-(a-1)t-b,t∈R},且A∩B={x|-1≤x≤2},求常数a、b的值.
答
由A中x=t2+(a+1)t+b=(t+
)2+b-a+1 2
≥b-(a+1)2
4
,(a+1)2
4
即A={x|x≥b-
};(a+1)2
4
由B中的x=-t2-(a-1)t-b=-[t2+(a-1)t+
]+(a−1)2
4
-b=-(t+(a−1)2
4
)2+a−1 2
-b≤(a−1)2
4
-b,(a−1)2
4
即B={x|x≤
-b},(a−1)2
4
∵A∩B={x|-1≤x≤2},
∴
,
b−
=−1(a+1)2
4
−b=2(a−1)2
4
解得:a=-1,b=-1.
答案解析:利用二次函数性质求出集合A与B中x的范围,根据A与B的交集即可求出a与b的值.
考试点:交集及其运算.
知识点:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.