已知两集合A={x|x=t2+(a+1)t+b,t∈R},B={x|x=-t2-(a-1)t-b,t∈R},且A∩B={x|-1≤x≤2},求常数a、b的值.

问题描述:

已知两集合A={x|x=t2+(a+1)t+b,t∈R},B={x|x=-t2-(a-1)t-b,t∈R},且A∩B={x|-1≤x≤2},求常数a、b的值.

由A中x=t2+(a+1)t+b=(t+

a+1
2
2+b-
(a+1)2
4
≥b-
(a+1)2
4

即A={x|x≥b-
(a+1)2
4
};
由B中的x=-t2-(a-1)t-b=-[t2+(a-1)t+
(a−1)2
4
]+
(a−1)2
4
-b=-(t+
a−1
2
2+
(a−1)2
4
-b≤
(a−1)2
4
-b,
即B={x|x≤
(a−1)2
4
-b},
∵A∩B={x|-1≤x≤2},
b−
(a+1)2
4
=−1
(a−1)2
4
−b=2

解得:a=-1,b=-1.
答案解析:利用二次函数性质求出集合A与B中x的范围,根据A与B的交集即可求出a与b的值.
考试点:交集及其运算.
知识点:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.