请教一道积分的证明题假定所涉及的反常积分(广义积分)收敛,证明:∫f(x-(1/x))dx=∫f(x)dx(等式的两边积分上限是正无穷,下限是负无穷)书中是这样证明的,令t=x-(1/x),由二次函数的解法可得x=(t+(或-)(((t^2)+4)^(1/2)))/2,当x>0时,x=(t+(((t^2)+4)^(1/2)))/2;当x0时,x=(t+(((t^2)+4)^(1/2)))/2;当x
问题描述:
请教一道积分的证明题
假定所涉及的反常积分(广义积分)收敛,
证明:∫f(x-(1/x))dx=∫f(x)dx(等式的两边积分上限是正无穷,下限是负无穷)
书中是这样证明的,令t=x-(1/x),由二次函数的解法可得x=(t+(或-)(((t^2)+4)^(1/2)))/2,当x>0时,x=(t+(((t^2)+4)^(1/2)))/2;当x0时,x=(t+(((t^2)+4)^(1/2)))/2;当x
答
如图.
另一方面,从t=x-(1/x)的图像上看,x=0处无定义,图像分左右支.反解后相当于求反函数(关于直线t=x做对称),于是原来的右支变为恒大于零,左支恒小于零.所以书上的证明是对的.