lim x→0 (2xˆ4+3x³-4x²)/(xˆ5+7x³-2x²)= A.2 B.0 C.-2 D.∞

问题描述:

lim x→0 (2xˆ4+3x³-4x²)/(xˆ5+7x³-2x²)= A.2 B.0 C.-2 D.∞

x→0lim (2xˆ4+3x^3-4x^2) / (xˆ5+7x^3-2x^2)上下同时除以x^2=lim (2xˆ4+3x^3-4x^2)/x^2 / (xˆ5+7x^3-2x^2)/x^2=lim (2xˆ2+3x-4) / (xˆ3+7x-2)=(0+0-4) / (0+0-2)=2有不懂欢迎追问...