提问GMAT余数题,实在数学差,希望指点!If n is a positive integer and r is the remainder when (n-1)*(n+1) is divided by 24, what is the value of r?1. 2 is not a factor of n.2. 3 is not a factor of n.请问这题思路是什么啊?怎么利用那两个条件,我完全无从下手(n+1)(n-1),中间是相乘,我多余打了个*
问题描述:
提问GMAT余数题,实在数学差,希望指点!
If n is a positive integer and r is the remainder when (n-1)*(n+1) is divided by 24, what is the value of r?
1. 2 is not a factor of n.
2. 3 is not a factor of n.
请问这题思路是什么啊?怎么利用那两个条件,我完全无从下手
(n+1)(n-1),中间是相乘,我多余打了个*
答
1楼的答案,随便找一个符合条件的数就知道不对啊。
我觉得可以假设啊,假设一个正整数不能被2整除那么它必然是个奇数,在奇数中找到一个数,再代入上面的代数式再除以24,只要找到符合这个条件的数得出余数就OK了,同理对待第二个条件.得出r=1,r=5
我觉得考试的时候就要快,不过这道题的话,如果一时想不出来又不是考试的话,你可以自己总结一些整数不能被某些数整除的特征,这个有的GMAT书上应该有,不过我还没研究,就只能帮你这么多了,嘿嘿,不好意思啊。
答
Answer:According to the given condition,we have (n-1)(n+1)-r = 24m,where m is an integer,and therefore,r = n²-1-24m.1.Let m=0,n=3,we have r=8.Note that 2 is not a factor of n when n=3.2.Let m=0,n...