已知:△ABC是⊙O的内接正三角形,P为弧BC上一点(与点B、C不重合),(1)如果点P是弧BC的中点,求证:PB+PC=PA;(2)如果点P在弧BC上移动时,(1)的结论还成立吗?请说明理由.

问题描述:

已知:△ABC是⊙O的内接正三角形,P为弧BC上一点(与点B、C不重合),

(1)如果点P是弧BC的中点,求证:PB+PC=PA;
(2)如果点P在弧BC上移动时,(1)的结论还成立吗?请说明理由.

(1)连OB,OC,如图∵点P是弧BC的中点,△ABC是⊙O的内接正三角形,∴AP为⊙O的直径,∴∠BPO=∠ACB,∠APC=∠ABC,∵△ABC是⊙O的内接正三角形,∴∠ACB=∠ABC=60°,∴∠BPO=∠APC=60°,∴△OBP和△OPC都是等边...
答案解析:(1)连OB,OC,由点P是弧BC的中点,△ABC是⊙O的内接正三角形,根据垂径定理的推论得到AP为⊙O的直径,易得△OBP和△OPC都是等边三角形,于是得到结论;
(2)截取PE=PC,则△PEC为等边三角形,得到CE=CP,∠PCE=60°,易证△CAE≌△CBP,得到AE=PB,即有PB+PC=PA.
考试点:圆周角定理;全等三角形的判定与性质.
知识点:本题考查了圆周角定理:同弧所对的圆周角相等,也考查了等边三角形的性质和三角形全等的判定与性质以及证明一条线段等于两条线段和的方法.