如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在y≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T一带电量q=+0.2C、质量m=0.4kg的小球由长l=0.4m的细线悬挂于P点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.(g=10m/s2),求:(1)小球运动到O点时的速度大小;(2)悬线断裂前瞬间拉力的大小;(3)ON间的距离.

问题描述:

如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在y≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T一带电量q=+0.2C、质量m=0.4kg的小球由长l=0.4m的细线悬挂于P点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.(g=10m/s2),求:

(1)小球运动到O点时的速度大小;
(2)悬线断裂前瞬间拉力的大小;
(3)ON间的距离.

(1)小球从A运到O的过程中,根据动能定理:12mvo2=mgl−qEl   ①带入数据求得小球在O点速度为:vo=2m/s  ②(2)小球运到O点绳子断裂前瞬间,对小球应用牛顿第二定律:T−mg−f洛=mvo2l &nbs...
答案解析:(1)由A→O的过程,小球受重力、绳的拉力、电场力和洛伦兹力,绳的拉力和洛伦兹力均与运动方向垂直不做功,只有重力和电场力做功,根据动能定理即可求得O点的速度.
(2)小球由A→O的过程做圆周运动,在最低点,绳的拉力、洛伦兹力和重力的合力提供向心力,根据牛顿第二定律即可求得拉力大小.
(3)悬线断裂后,沿电场方向小球做匀减速直线运动,沿重力方向做*落体运动,小球又恰好能通过O点正下方的N点,说明小球到达N点时,沿电场方向的速度为vo,从而可求的由O→N的时间,继而求出ON间的距离.
考试点:动能定理的应用;匀变速直线运动的速度与时间的关系;牛顿第二定律;向心力.


知识点:本题考查物体在复合场中的运动,分清楚小球A→N的运动过程,并正确的做出受力分析是解决本题的关键,另外还要会根据物体受力情况判断出物体的运动情况,再结合动能定理即可轻松解决问题.