阅读材料:
问题描述:
阅读材料:
因为:1/(1·3)=1/2(1-1/3),1/(3·5)=1/2(1/3-1/5),1/(5·7)=1/2(1/5-1/7),……
1/(17·19)=1/2(1/17-1/19)
所以:1/(1·3)+1/(3·5)+1/(5·7)+……+1/(17·19)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+……+1/2(1/17-1/19)
=1/2(1-1/3+1/3-1/5+1/5-1/7+……+1/17+1/19)
=1/2(1-1/19)
=9/19
受此启发,请解下面的方程:
1/x(x+3)+1/(x+3)(x+6)+1/(x+6)(x+9)=3/(2x+18)
答
1/x(x+3)=1/3 * [1/x - 1/(x+3)],1/(x+3)(x+6)=1/3 * [1/(x+3) - 1/(x+6)],1/(x+6)(x+9)=1/3 * [1/(x+6) - 1/(x+9)],所以左式1/x(x+3)+1/(x+3)(x+6)+1/(x+6)(x+9)= 1/3 * [1/x - 1/(x+9)],= 1/3 * (x+9-x) / x(x+9) ...