数学配方法

问题描述:

数学配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法.这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式.同时也是数学一元二次方程中的一种解法
1.转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式   2.移项:常数项移到等式右边   3.系数化1:二次项系数化为1   4.配方:等号左右两边同时加上一次项系数一半的平方   5.用直接开平方法求解 整理 (即可得到原方程的根)   代数式表示方法:注(^2是平方的意思.)   ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)   例:解方程2x^2+4=6x   1.2x^2-6x+4=0   2.x^2-3x+2=0   3.x^2-3x=-2   4.x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)   5.(x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0)   6.x-1.5=±0.5   7.x1=2   x2=1 (一元二次方程通常有两个解,X1 X2)