设一棵完全二叉树具有100个结点,则此完全二叉树有几个度为2的结点?..

问题描述:

设一棵完全二叉树具有100个结点,则此完全二叉树有几个度为2的结点?..

根据二叉树的性质:对于一棵非空的二叉树,如果叶子节点数为n0,度为2的结点数为n2,则no=n2+1.
根据完全二叉树的定义可得:在完全二叉树中度为1的结点n1只能取两种情况,要么为0,要么为1.所以:n0+n1+n2=100 又n0=n2+1; 2n2=99-n1; 因为结点数为整数,所以n1=1,n2=49,n0=50
所以度为1的结点有一个,叶子结点有50个,度为2的结点为49个