一个直角梯形,它的上底是下底的60%.如果上底增加24米,可变成正方形.原来直角梯形的面积是______平方米.
问题描述:
一个直角梯形,它的上底是下底的60%.如果上底增加24米,可变成正方形.原来直角梯形的面积是______平方米.
答
原来直角梯形的下底是:24÷(1-60%)=60(米);
原來直角梯形的上底是:60×60%=36(米);
原來直角梯形的面积是:(60+36)×60÷2=2880(平方米);
答:原来直角梯形的面积是2880平方米.
故答案为:2880.
答案解析:根据题意可知:梯形的下底和梯形的高相等,把下底看作单位“1”,上底增加24米,变成正方形;即下底的(1-60%)是24米,根据“对应数÷对应分率=单位“1”的量”求出下底的长;然后根据一个数乘分数的意义求出上底的长,继而根据“梯形的面积=(上底+下底)×高÷2”计算出直角梯形的面积.
考试点:图形的拆拼(切拼);百分数的实际应用.
知识点:解答此题的关键是先求出下底的长,然后根据一个数乘分数的意义计算出上底的长,进而根据梯形的面积计算公式进行解答即可.