用圆心角为120° 半径为6cm的扇形围成圆锥的侧面 则这个圆锥的高主要是要过程 给我讲讲先求什么再求什么最好

问题描述:

用圆心角为120° 半径为6cm的扇形围成圆锥的侧面 则这个圆锥的高
主要是要过程 给我讲讲先求什么再求什么最好

用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高:
√{6^2-[(2*3.14*6*120/360)/(2*3.14)]^2}
=√{36-4}
=√32
=4√2 .

步骤:
1.扇形的弧长等于围成的圆锥的底圆周长,从而求出底圆半径;
2.扇形的半径等于围成的圆锥的母线长度;
3.圆锥的底圆半径、母线、高构成一个直角三角形,解该直角三角形可求得高.