如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是(  )A. 78B. 72C. 54D. 48

问题描述:

如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是(  )
A. 78
B. 72
C. 54
D. 48

如图所示,周边的六个挖空的正方体每个面增加4个正方形,且减少了1个正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.
故选B.
答案解析:如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.
考试点:几何体的表面积.
知识点:本题关键要能够想象出物体表面积的变化情况,主要考查空间想象能力.