设f(x)在[0,1]上单调递减的连续函数 试证明对于任何q∈[0,1]都有不等式∫0→q f(x)dx≥q∫ 0→1 f(x)dx
问题描述:
设f(x)在[0,1]上单调递减的连续函数 试证明对于任何q∈[0,1]都有不等式∫0→q f(x)dx≥q∫ 0→1 f(x)dx
答
q>0时,两边同除以q,然后求导验证左端递减即可
设f(x)在[0,1]上单调递减的连续函数 试证明对于任何q∈[0,1]都有不等式∫0→q f(x)dx≥q∫ 0→1 f(x)dx
q>0时,两边同除以q,然后求导验证左端递减即可