有一片牧场,草每天均匀地长.24头牛6天可吃完;21头牛8天可吃完.要使草永远吃不完,至多放______头牛.
问题描述:
有一片牧场,草每天均匀地长.24头牛6天可吃完;21头牛8天可吃完.要使草永远吃不完,至多放______头牛.
答
(21×8-24×6)÷(8-6)÷1,
=(168-144)÷2÷1,
=24÷2÷1,
=12÷1
=12(头),
答:要使草永远吃不完,至多放12头牛.
答案解析:要使草永远吃不完,必须满足放的牛的头数每天吃掉的草与每天生长的草相等.假设每头牛每天吃的草为1,先求出24头牛6天可吃完;21头牛8天可吃完时,两种情况下牛的吃草量,再根据每天草的生长量=多吃的草的量÷多吃的天数,求出每天草的生长量,最后根据至多放的牛的头数=每天草的生长量÷每头牛每天吃的草(也就是1)解答.
考试点:牛吃草问题.
知识点:解答本题时首先要明确:要使草永远吃不完,必须满足放的牛的头数每天吃掉的草与每天生长的草相等.只要根据两种情况下求出草每天的生长量即可解答.