关于微分方程的一个问题题目是;xy'=y(1+lny-lnx)的通解我看答案是这么解的:dy/dx=y/x·(1+ln(y/x))令y/x=u,u+x(du/dx)=u(1+lnu)du/(ulnu)=1/xdx两边积分:lnlnu=lnx+lnC 这里,那个lnC怎么来的啊?
问题描述:
关于微分方程的一个问题
题目是;xy'=y(1+lny-lnx)的通解
我看答案是这么解的:
dy/dx=y/x·(1+ln(y/x))
令y/x=u,u+x(du/dx)=u(1+lnu)
du/(ulnu)=1/xdx
两边积分:
lnlnu=lnx+lnC
这里,那个lnC怎么来的啊?
答