一简谐波沿x轴正向传播,波的振幅为A,角频率为ω,波速为u.若以原点处的质元经平衡位置正向运动时作为计时的起点,则该波的波动方程是y=Acos[ω(t-x/u)-π/2].请问π/2怎么来的?

问题描述:

一简谐波沿x轴正向传播,波的振幅为A,角频率为ω,波速为u.若以原点处的质元经平衡位置正向运动时作为计时的起点,则该波的波动方程是y=Acos[ω(t-x/u)-π/2].请问π/2怎么来的?

“若以原点处的质元经平衡位置正向运动时作为计时的起点,”通过这句话可知,方程应该是正弦波.但是因为他前面写的是cos,即余弦波,所以就需要吧相位移动π/2了,如果写成sin正弦波就不需要吧相位移动π/2了.