P为锐角△ABC内任一点,直线AP,BP,CP分别分别交△PBC,△PCA,△PAB的外接圆于另一点A1,B1,C1(不同于P)求证:(1+2PA/PA1)(1+2PB/PB1)(1+2PC/PC1)≥8
问题描述:
P为锐角△ABC内任一点,直线AP,BP,CP分别分别交△PBC,△PCA,△PAB的外接圆于另一点A1,B1,C1(不同于P)
求证:(1+2PA/PA1)(1+2PB/PB1)(1+2PC/PC1)≥8
答
自己不会,google 到的。。。
如图,在四边形PBA1C中PA1*BC=PB*CA1+PC*BA1
PA1=PB*CA1/BC+PC*BA1/BC
在三角形A1BC中由正弦定理
PA1=sinβ/sinα*PB+sinγ/sinα*PC,同理有
PB1=sinγ/sinβ*PC+sinα/sinβ*PA
PC1=sinα/sinγ*PA+sinβ/sinγ*PB
联立方程组解得
2*PA=sinβ/sinα*PB1+sinγ/sinα*PC1-PA1
2*PB=sinγ/sinβ*PC1+sinα/sinβ*PA1-PB1
2*PC=sinα/sinγ*PA1+sinβ/sinγ*PB1-PC1
于是2*PA+PA1=sinβ/sinα*PB1+sinγ/sinα*PC1≥2√(sinβ/sinα*PB1*sinγ/sinα*PC1)
2*PB+PB1=sinγ/sinβ*PC1+sinα/sinβ*PA1≥2√(sinγ/sinβ*PC1*sinα/sinβ*PA1)
2*PC+PC1=sinα/sinγ*PA1+sinβ/sinγ*PB1≥2√(sinα/sinγ*PA1*sinβ/sinγ*PB1)
相乘即得
(1+2*PA/PA1)*(1+2*PB/PB1)*(1+2*PC/PC1)>=8
答
看看就吃力了,嘿嘿