英语翻译Finally,we will discuss a possible mechanism for theobserved growth of single-crystalline rutile TiO2.As shownin Fig.7,the boundary edge between the adjacent diamond(1 0 1) and (1 1 0) facets is parallel to the ½¯111\4 direction.This direction was parallel to the observed /1 11S and/110S axes of the grown single-crystalline TiO2 thinfilms,marked S2 and S3,respectively.This suggests thatlow-index planes appear on the surrounding edge surfacesof the

问题描述:

英语翻译
Finally,we will discuss a possible mechanism for the
observed growth of single-crystalline rutile TiO2.As shown
in Fig.7,the boundary edge between the adjacent diamond
(1 0 1) and (1 1 0) facets is parallel to the ½¯111\4 direction.
This direction was parallel to the observed /1 11S and
/110S axes of the grown single-crystalline TiO2 thin
films,marked S2 and S3,respectively.This suggests that
low-index planes appear on the surrounding edge surfaces
of the grown TiO2 thin films so as to reduce the total
number of dangling bonds and to decrease the total free
energy of the concerned system.In addition,the effect of
low-energy particle beam such as the Bravais law and the
Onderdelinden channeling effect may determine the crystalline
direction of the grown single-crystalline films [1].
Because the diamond (1 1 0) facet was inclined at 601
against the incident electron beam direction when the
incident electron beam impinged parallel to the diamond
[0 1 1] direction to the rod substrate,this off-angle effect
should be considered to estimate the sizes of the singlecrystalline
TiO2 regions.The regions estimated for the
single-crystalline TiO2 thin films marked S2 and S3
were E200\2100 and E150\2140nm2 in size,respectively,
being nearly equal each other.Thus,it is concluded that the
TiO2 thin films deposited on substrates with sizes of
E2\2104nm2 by using low-energy particle beam can grow
as a single-crystalline phase.It is also found that the area of
the single-crystalline TiO2 can spread over parts of the
adjacent idiomorphic surfaces.Since any strain induced by
the lattice misfit between the substrate and overlayer
slightly increase the total free energy of the system,the
rutile TiO2 film is considered to more easily grow on a
smooth flat surface with substantially less strain energies.
Thus,it is expected that single-crystalline rutile thin films
may grow on flat substrates with larger areas than those
treated in the present study.
However,in the present study where the incident
directions of the low-energy particles were not well defined
due to usage of the polycrystalline diamond films,no reliable
relation between the growing plane direction of the overlayer
and the particle beam direction has been determined.Thus,
we should investigate in more details the threshold sizes of
the substrates for the single-crystallization,the mechanism
governing the crystalline directions,the influence of the
sputtered particle beam,and so on.

最后,我们将讨论可能的机制,以便观察到的增长,单结晶金红石型二氧化钛,显示图七,边缘之间的边界毗邻的钻石( 1 0 1 )及( 1 1 0 )面是平行向½ ¯ 111方向。这个方向是平行的观察/ 1 11 S和/ 110s轴线生长单结晶二氧化钛薄膜,显着S2的和S3 ,分别表明,低指数的飞机出现在周围边缘的表面生长TiO2薄膜,从而减少总数的悬挂键和减少总的免费能源的有关制度。此外,该效果的低能量粒子梁如bravais国际法和翁德尔德林登窜效果可能确定的结晶方向生长单结晶薄膜[ 1 ] 。因为钻石( 1 1 0 )面倾向于在601事件对电子束的方向,当事件的电子束冲击平行的钻石[ 0 1 1 ]方向杆底,这起飞角度的影响应被视为估计大小的singlecrystalline二氧化钛地区。该地区估计为单一晶TiO2薄膜的显着S2的和S3分别e200 100和e150 140nm2的大小,分别被几乎相等对方。因此,这是得出结论认为, TiO2薄膜的衬底上沉积面积的E2 104nm2用低能量粒子光束可以成长为单一晶相,这是还发现,该地区的单结晶二氧化钛,可以分散部分毗邻idiomorphic表面。因为任何应变诱导由晶格失配之间的衬底和overlayer略有增加,共提供免费能源的系统,金红石TiO2薄膜被认为是更容易成长,就顺利平面与大幅减少应变能量。因此,可以预料,单结晶金红石型薄膜的增长也可能会在单位基板与大面积比治疗在本研究中。
然而,在当前的研究中如意外事故的指示,低能量粒子均没有明确界定,由于使用的聚晶金刚石薄膜,没有可靠的关系日益平面方向的overlayer和粒子光束的方向已经确定。因此,我们应在调查更详细的阈值大小的衬底为单结晶,机制的结晶方向,影响溅射粒子光束,等等。

是Izumi,Teraji 和 Ito 在 Journal of Crystal Growth去年2月登的一篇文章吧,看过看过,是同行吧.不才在国外就是学这个的,姑且试一试,但是很多专业词汇的中文名称不大熟,多多包涵.
最后,我们将探讨所观测到的单晶金红石二氧化钛生长的可能机制.如图7所示,在相邻的钻石(101)和(110)面的边界边缘与½¯111方向平行.
此方向与被生成并被分别标为S2和S3的二氧化钛薄膜上所观测到的/111S和/110S轴平行.
这说明在所生成的二氧化钛薄膜周围边缘的表面形成的低标平面是为了减少虚悬键的总数和降低该系统的总*能.
此外,低能量粒子束的效应,例如布拉韦定律和Onderdelinden沟道效应,可能影响到生成的单晶膜的晶体方向.【1】
因为钻石(110)面在入射电子束与杆状基质的钻石(011)面平行撞击时在601向入射的电子束倾斜,这个偏转角度在估算单晶体二氧化钛域大小时需被考虑在内.
被分别标为S2和S3的二氧化钛单晶薄膜域的大小估算分别为E200\2100和E150\2140nm2『从PDF拷贝时抄错了吧』,几乎相等.
所以,结论是:通过使用低能量粒子束在基质上沉积的二氧化钛薄膜可以以单晶体相生长.
同时也发现单晶体二氧化钛区可以扩张至相邻的自形面的一部分上.
即然因罩面与基质间晶格错配所产生的应变会小幅提升系统的总*能,因此在平滑,所以能实质上减少应变能的表面上生长金红石二氧化钛膜将会更加容易.
所以可以预料单晶金红石薄膜在平滑基质上的生长区域会比现在的研究中更大.
然而,现今的研究中因为使用多晶体钻石膜致使低能量粒子的入射角无法被明确测定,我们无法确定罩面的生长平面方向与粒子束方向间是否有任何关系.
因此,我们应该更深入的研讨基质的单晶体结晶化的大小阈值,决定晶体方向的机制,粒子束溅射的影响,等等.