解方程:3x⁴-10x²+3=0
问题描述:
解方程:3x⁴-10x²+3=0
答
同学,你好,这道题是换元法的运用
令x^2=t, t≥0
则,原方程=3t^2-10t+3=0
化为 (3t-1)(t-3)=0
t=1/3或3
即 x^2=1/3或x^2=3
所以x=±√3/3或±√3
答
(3x^2-1)(x^2-3)=0
(1) 3x^2-1=0, 3x^2=1,x=±√3/3
(2)x^2-3=0,x^2=3, x=±√3
答
3x⁴-10x²+3=0
(3x²-1)(x²-3)=0
(3x²-1)(x+√3)(x-√3)=0
(√3x-1)(√3x+1)(x+√3)(x-√3)=0
解得 x = ± √3 或 x= ±√3/3