一道积分题:∫1/(1+x^2)^2 dx如果把括号外面的平方换成三次方四次方呢
问题描述:
一道积分题:∫1/(1+x^2)^2 dx
如果把括号外面的平方换成三次方四次方呢
答
记In=∫1/(1+x^2)^n dx
那么In= ∫1/(1+x^2)^n dx=x/(1+x^2)^n-∫xd(1/(1+x^2)^n)
=x/(1+x^2)^n+2n∫x^2/(1+x^2)^(n+1)dx
=x/(1+x^2)^n+2n∫1/(1+x^2)^ndx-2n∫1/(1+x^2)^(n+1)dx
=x/(1+x^2)^n+2n*In-2nIn+1
最终有
In+1=(2n-1)/2n*In+1/2n*x/(1+x^2)^n
显然I1=arctan(x)+c
那么I2=1/2*(x/(1+x^2)+arctan(x))+c
其余可以利用递推公式依次计算。
答
记In=∫1/(1+x^2)^n dx
那么In= ∫1/(1+x^2)^n dx=x/(1+x^2)^n-∫xd(1/(1+x^2)^n)
=x/(1+x^2)^n+2n∫x^2/(1+x^2)^(n+1)dx
=x/(1+x^2)^n+2n∫1/(1+x^2)^ndx-2n∫1/(1+x^2)^(n+1)dx
=x/(1+x^2)^n+2n*In-2nIn+1
最终有
In+1=(2n-1)/2n*In+1/2n*x/(1+x^2)^n
显然I1=arctan(x)+c
那么I2=1/2*[x/(1+x^2)+arctan(x)]+c