另一道数列 十点半之前等答案!
问题描述:
另一道数列 十点半之前等答案!
设数列{an}的每一项都不为零,Sn=a1+a2+...+an,已知4Sn=(an+1)*(an+1),求数列{an}
答
4Sn=(an+1)*(an+1)=an^2+2an+1,
4S(n-1)=(a(n-1)+1)*(a(n-1)+1)=a(n-1)^2+2a(n-1)+1,
4Sn-4S(n-1)=4an
4Sn-4S(n-1)=an^2+2an+1-a(n-1)^2-2a(n-1)-1=an^2+2an-a(n-1)^2-2a(n-1)
an^2+2an-a(n-1)^2-2a(n-1)=4an
an^2-a(n-1)^2=2an+2a(n-1)
(an-a(n-1))*(an+a(n-1))=2*(an+a(n-1))
an-a(n-1)=2
4a1=4S1=(a1+1)*(a1+1),所以a1=1
an=2*(n-1)+1=2n-1