用数学归纳法证明:x2n-1+y2n-1(n∈N*)能被x+y整除.从假设n=k成立到n=k+1成立时,被整除式应为( ) A.x2k+3+y2k+3 B.x2k+2+y2k+2 C.x2k+1+y2k+1 D.x2k+y2k
问题描述:
用数学归纳法证明:x2n-1+y2n-1(n∈N*)能被x+y整除.从假设n=k成立到n=k+1成立时,被整除式应为( )
A. x2k+3+y2k+3
B. x2k+2+y2k+2
C. x2k+1+y2k+1
D. x2k+y2k
答
由于当n=k+1 时,x2n-1+y2n-1 =x2k+1 +y2k+1,
故选 C.