1+2/1+3/1+3/2+4/1+4/2+4/3+.+100/1+100/2+.+100/99=?(过程)(2/1这些表示二分之一)

问题描述:

1+2/1+3/1+3/2+4/1+4/2+4/3+.+100/1+100/2+.+100/99=?(过程)(2/1这些表示二分之一)
只有10月5日一天时间解答哦~谢谢↖(^ω^)↗

应该这么打1+1/2+1/3+2/3+1/4+2/4+3/4+……+1/100+2/100+……+99/100
因为
1/n+2/n+3/n+……+(n-1)/n
=[1+2+……+(n-1)]/n
=[n(n-1)/2]/n
=(n-1)/2
所以原式
=1 + 1/2 + 2/2 + 3/2 + …… + 98/2 + 99/2
=1 + (1+2+3+.+98+99)/2
=1 + 99*(99+1)/2/2
=2476