已知a,b,c都是正数,a+b+c=1,设t=(根号3a+2)+(根号3b+2)+( 根号3c+2),求证:t
问题描述:
已知a,b,c都是正数,a+b+c=1,设t=(根号3a+2)+(根号3b+2)+( 根号3c+2),求证:t
答
证:已知a>0,b>0,c>0,a+b+c=1设X=√(3a+2),Y=√(3b+2),Z=√(3c+2)则t=X+Y+ZX^2=(3a+2),Y^2=(3b+2),Z^2=(3c+2)X^2+Y^2+Z^2=(3a+2)+(3b+2)+(3c+2)=3*(a+b+c)+6=9∵(X-Y)^2≥0,(Y-Z)^2≥0,(X-Z)^2≥0∴2XY≤X^2+Y...