已知二次函数f(x)=x²-2x-n²-n的图像与x轴的交点为(an,0)、(bn,0)(n=1,2,3…n是下标)

问题描述:

已知二次函数f(x)=x²-2x-n²-n的图像与x轴的交点为(an,0)、(bn,0)(n=1,2,3…n是下标)
则式子1/a1+1/a2+…+1/a2008+1/b1+1/b2+…+1/b2008=

f(x) = (x-1)^2 - (n+1/2)^2 - 3/4an = 1 + 根号(.)bn = 1 - 根号(.)an+bn = 2an*bn = n^2 + n=n(n+1)1/a1+1/b1 + . + 1/a2008 + 1/b2009 = 2 (1/2 + 1/6 + ...+ 1/(2008*2009)) = 2 (1 - 1/2009) = 4016/2009...如果二次函数x^2 + bx + c 的根是x1,x2, 则x^2 + bx + c = (x-x1)(x-x2) = x^2 - (x1+x2)x + x1x2
所以两根之和=-b (一次项系数的负值),两根之积=c(常数项)
即an+bn = 2, an*bn = -n(n+1)
1/a1+1/a2 +...+1/a2008 + 1/b1+1/b2+...+1/b2008
=1/a1+1/b1+1/a2+1/b2+....+1/a2008+1/b2008
=(a1+b1)/(a1*b1)+....+(a2008+b2008/(a2008*b2008)
=-2/(1*2)-2/(2*3)-...-2/(2008*2009)
=-2*( 1 - 1/2 + 1/2 - 1/3 + ...+1/2008 - 1/2009) = -2 (1-1/2009) = -2*2008/2009 = -4016/2009